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J. Phys.: Condens. Matter 1 (1989) 7543-7553. Printed in the UK 

Localised acoustic waves associated with a planar defect 
in a superlattice 

E M Khourdifi and B Djafari Rouhani 
Laboratoire de Physique du Solide, FacultC des Sciences et Techniques, Universitt de 
Haute Alsace, 4 rue des Freres Lumikre 68093 Mulhouse CCdex, France 

Abstract. We present a theoretical study of the existence of shear horizontal vibrations 
localised at a planar defect in a superlattice. Such a defect, which breaks the translational 
symmetry along the axis of the superlattice, is formed by a layer whose elastic parameters and 
thickness are different from those of the normal layers; it may result from inhomogeneities in 
the properties of the perfect superlattice. We show that localised shear horizontal modes 
associated with the planar defect may exist in the gaps of the superlattice or even below the 
bottom of the bulk bands and may in this case extend down to kll = 0 (kll is the wavevector 
parallel to the layers). The dispersion relations of these waves are discussed as functions of the 
relative parameters of the superlattice and the planar defect. These results are qualitatively 
compared with those obtained in other surface and interface problems in which the existence 
of shear horizontal excitations have been investigated. 

1. Introduction 

It is now well established that the investigation of phonons in heterostructures and 
superlattices can provide much information on the composition, period, interfaces, 
strain field and generally speaking on the quality of these systems [l]. One may also 
think about future applications in acoustic and acousto-optic devices. Much of the work 
devoted to vibrations in superlattices has been directed towards the study of infinite or 
semi-infinite superlattices. Among the recent works in the field of acoustic waves let us 
mention the investigation of the dispersion relations of bulk phonons (for a general 
direction of propagation [2-31) and of surface phonons [MI whose eigenfunctions are 
exponentially decayingfar from the surface of the superlattice. Different types of surface 
wave (Love, Rayleigh, Sezawa) have also been observed by Brillouin scattering and 
by surface acoustic techniques [7-151. The study of these surface phonons provides 
complementary information on the acoustic properties of the superlattices, especially 
in the vicinity of the surface. 

In addition to surfaces, other defects that break the translational invariance of the 
perfect superlattice also modify the vibrational properties and may give rise to localised 
modes inside the gaps. As a first step one can deal with the simplest systems in which the 
symmetry of translation parallel to the layers is still conserved, as for example the case 
of a superlattice deposited on a substrate [16] or of a planar defect in a superlattice. It is 
interesting from a fundamental point of view to search for the conditions under which 
one can find localised modes associated with these defects, whose frequencies may be 
situated below the bulk bands (as in homogeneous materials) or inside the gaps of 
the superlattice. In addition, the investigation of these waves provides a tool for the 

0953-8984/89/417543 + 11 $02.50 @ 1989 IOP Publishing Ltd 7543 



7544 E M  KhourdiJi and B Djafari Rouhani 

determination of the acoustic properties of slabs in confined geometries. The appearance 
of these localised modes influences the transmission coefficient of acoustic waves through 
the whole structure which can be measured; this effect may also be exploited in relation 
to possible acoustic devices. 

In this paper we study the existence of localised shear horizontal modes associated 
with a planar defect in a superlattice. Though very simple because involving only one 
direction of vibration, the study of shear horizontal waves in superlattices may lead to 
the discovery of new types of modes. Indeed, we know [4] that, in contrast to the free 
surface of a homogeneous medium, the surface of a superlattice can support shear 
horizontal localised vibrations. Similarly, we have shown recently [16] that such waves 
may exist at the interface between a superlattice and a substrate, while the interface 
between two homogeneous media cannot support such localised vibrations. Let us also 
mention that the results obtained here can be transposed without difficulty to pure 
longitudinal waves propagating along the axis of the superlattice because these modes 
also involve one vibrational component. 

The planar defect considered in this paper is obtained by assuming that one layer in 
the superlattice has different elastic parameters and thickness than the normal layers. 
Such a situation can be produced artificially or may originate from the presence of 
inhomogeneities in the superlattice, such as fluctuation in the thickness of one layer or 
mixing between two adjacent layers at an interface; these inhomogeneities can therefore 
induce localised modes and contribute to the density of states inside the gaps of the 
superlattice. The derivation of the dispersion relations of the localised waves is presented 
in 0 2. In 0 3, we discuss a few examples of the dispersion curves and also examine the 
long wavelength behaviour of these waves. The conclusions are given in § 4 where we 
also present a brief survey of other surface and interface problems in which localised 
shcar horizontal waves may exist. 

2. Calculation of the dispersion relations 

In our calculation all media are assumed to be of hexagonal symmetry with isotropic 
(0001) interfaces. In this case the shear horizontal vibrations are decoupled from those 
polarised in the sagittal plane [6]. Each layer is characterised by its elastic constants 
Cu and Cg,  mass density p(’) and thickness d(‘) ( i  = 1, 2 for the two constituents of 
the superlattice and i = p for the planar defect). However the dispersion relations 
obtained below can also be used [6] after a simple modification for a superlattice made 
of cubic materials with (001) interfaces if the wavevector ki, (parallel to the layers) is 
directed along the [loo] or [110] directions. Indeed, for these two orientations of the 
wavevector kll the equations of motion of the elasticity theory as well as the interface 
boundary conditions are formally similar for cubic and hexagonal materials and therefore 
it is possible to establish a correspondence between the parameters of each cubic crystal 
and those of a ‘fictitious’ hexagonal crystal [ 6 ] .  When ki, is parallel to [ 1001 (or [110]) the 
elastic constants %44 and (e66 of this fictitious material are given by = C44, %66 = C4, 

Let x3 be the axis of the superlattice and kll parallel to the x1 axis. Then in the case of 
shear horizontal vibrations, the only non-zero component of the displacement.field is u2 
such that 

(or%44 = c44, %66 = (cl1 - c12)/2)- 

u2(x, 4 = u2(x3) exP[i(kIlxl - 4 1  (1) 
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where U is the frequency of the wave. The equation of motion of the elasticity in the 
bulk of each material becomes 

Therefore within the planar defect the displacement field becomes 

@(x, 0 = (A, exp(-apx3) + B, exp(apx3)) exP[i(klpl - wt)l (4) 

where A, and B, are two unknown multiplicative coefficients. Similarly in each layer of 
the superlattice the solution to the displacement can be written as [6] 

u?, ' ) (x ,  t) = [A("%') exp(-a,xfp')) + ~ ( " 9 ' )  exp(+a,x4 '~))1 exp[i(kilxl - wt)] ( 5 )  
where the superscript (n ,  i) refers to the layer of type i (i = 1,2)  belonging to the nth 
unit cell of the superlattice and xps') is a local coordinate (-d,/2 < x p , ' )  S d,/2) intro- 
duced for convenience. In the superlattice one can use the transfer-matrix method to 
relate the displacement field in succesive unit cells. Moreover, the Floquet theorem 
enables one to introduce a wavevector k3 such that 

A("%') (or B("3')) = A ,  (or B , )  exp(*ik,nD). (6) 
Here D = dl + d2 is the period of the superlattice. Let us notice [6, 31 that the wave 
vector k3 is real (or complex) if the frequency w belongs to a bulk band (or to a gap) of 
the superlattice. In addition, the coefficients A, and B, can be determined, except for a 
multiplicative factor, by using the continuity of the displacements and of the normal 
stresses at two consecutive interfaces (see [4] or [6] for details). One can also derive the 
usual dispersion relation of bulk waves in the superlattice [4,6] 

cos k 3 D  = ClC2 + 3(F + 1/F)S1S2 (7) 
where 

and 

A wave localised at the planar defect must decrease exponentially on both sides of the 
defect, when penetrating deep into the superlattice. Thus the frequency U of such a 
mode necessarily belongs to a gap. In each half of the superlattice, occupying respectively 
the x3-positive andx3-negative half-spaces, one can write the displacement field as in ( 5 )  
and (6) with k3 complex. However, in each solution we should only keep one of the 
terms in exp(+ik,nD) (6), i.e. the one which is decaying in that part of the superlattice. 
Therefore the displacement field behaves for example like exp(ik3nD) in the part of the 
superlattice occupying thex3-positive half-space and like exp( -ik3nD) in the other part. 

Now, the solution for each half of the superlattice is known except for a multiplicative 
factor, let us say A +  and A- respectively. Therefore we are left with four unknown 
coefficientsA,, B,,A+ andA-. Thesecoefficientssatisfyasetoffourlinearhomogeneous 
equations resulting from the boundary conditions at the interfaces between the planar 
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defect and the superlattice. By putting the determinant of this set of equations equal to 
zero one obtains the dispersion relation of the localised waves at the planar defect: 

( 9  ( F  - F-1) (1 - F2,)SzS, + [2S1 c2 + ( F  + F-l)CIS*] 

x [ ( l  + F;)CISp+ 2FpSlC,] - 2isin(k3D) 

x [(l + F2,)S1SP + 2FpC,C,] = 0 (9a) 

(9b) 

when the planar defect is bounded on both sides by the material 1 of the superlattice; 

(ii) (FFp' + F- 'FP)CIS ,S ,  + ( F ,  + F;')S,C,S, - 2isin(k,D)Cp = 0 

when the planar defect is bounded by material 1 on one side and by material 2 on the 
other side. 

In these expressions C,, S, (i = 1 , 2  or p) and Fare  defined as in (8) and 

F ,  = cgal/cg'a,. (10) 
Let us notice that by taking the particular limit of (9b) in which dl and d, go to infinity, 
one can obtain the dispersion relation of the modes localised at a sandwich [17,18] ABC 
(a material B = p sandwiched between two semi-infinite materials A 1 and C = 2) 

(F ,  + FF;1)Sp + (1 + F)C,  = 0.  (11) 
The dispersion relations (9) will be discussed in the next section where in particular we 
examine the long wavelength behaviour of the localised modes. 

3. Examples and discussion of the dispersion curves 

In the first part of this section we present a few illustrations of the dispersion curves of 
the localised waves and discuss their behaviour as functions of the elastic parameters 
and thicknesses of the layers. In the second part we investigate analytically the existence 
and dispersion of these modes in the long-wavelength approximation. 

Table 1. Elastic parameters of the materials Y and Dy. The elastic constants C,, are obtained 
as (Cll-ClJ/2. 

Cl' Cl2 C44 P 
Type of layer (10'" N m-*) (10'" N m-') (10'" N m-*) (Kg m-3) 

Y 7.79 2.85 2.431 4450 
DY 7.31 2.53 2.40 8560 

3.1. General results 

The results discussed below refer to a Y-Dy superlattice [19] where the crystals are 
of hexagonal symmetry and the interfaces have the (0001) orientation. The elastic 
parameters involved in the calculations are listed in table 1 and we have assumed that 
d l  = d ,  = 0/2.  A first example of the bulk bands and localised modes as functions of k,, 
is given in figure 1. Here we used the dispersion relation (9a) by assuming that the 



Localised waves in a superlattice 7547 

, . . . .  . . . . /  
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Figure 1. Bulk bands (shaded areas) and disper- 
sion curves of localised modes at a planar defect 
in a Y-Dy superlattice. The defect is obtained by 
assuming that one layer of Y has a thickness dp 
different from those of the normal layers. The 
localised branches are given for different values 

is the velocity of sound in Dy given by (C44/e)''2. 
of dp/d(Y ): 0.1 (. . . .) ;0.2 (- .-); 0.5 (---). C(Dy) 

material 1 is Dy whereas materials 2 and p are both Y. This means that the only 
perturbation introduced in an otherwise perfect superlattice consists of a difference 
between the thickness d, of one Y layer and those (d,) of the normal Y layers. In figure 
1 the dispersion curves are given for different values of the thickness d, ranging from 0 
to d,. As a function of d,, these curves are arranged in an increasing order inside the 
gaps whereas they are in a decreasing order below the bulk bands. At d2 = d,  one 
recovers the perfect superlattice and all the branches associated to the planar defect 
have merged into the bulk bands. 

In order to show the variations of the localised modes at higher values of d,  (d ,  > d,), 
we have presented in figure 2 the frequencies of these modes as functions of d, at a given 
value of kli, namely kllD = 0.5. One can observe that by increasing d, these frequencies 
are decreasing and the modes merge into the bulk bands, whereas new modes are 
extracted from higher bands. In addition, one can notice in figure2 that at each frequency 
w the localised mode is reproduced periodically as a function of d, (the period being 
dependent upon U). This behaviour can be explained in the following way: by fixing the 
values of kil and w and by varying d,, the only quantities that are varying in the dispersion 
equation (90) are C, = cosh(e,d,) and S, = sinh(a,d,). In figure 2, the values of kl, and 
w are such that e, is purely imaginary. Therefore C,, S, and the first member of (9a) 
become periodic functions of d, with a period 2n/eP. As in general the gaps are narrow 
in the superlattice, this period remains almost constant along a given gap. A result 
similar to that of figure 2 was obtained in our previous studies of the modes localised at 
the free surface of a superlattice [4-61, when varying the thickness of the layer which is 
at the surface. However, the periodic behaviour mentioned above has not been pointed 
out before. 

In figure 2 we have also presented the results concerning a Dy-Y superlattice in 
which a layer of Dy has a different thickness than those of the normal Dy layers. 

Figure 3 gives an illustration of the dispersion curves when the material p is different 
from both materials 1 and 2 which make the superlattice. The planar defect is assumed 
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Figure 2. Full curves: variations of the frequencies 
of the localised waves presented in figure 1 as 
functions of the thickness d,, at k,lD = 0.5; the 
curves are presented in the first two gaps of the 
superlattice. Dashed curves: same as full curves 
but the planar defect is now obtained by assuming 
that one layer of Dy has a thickness d, different 
from those of the normal layers. 

0 3 6 
kllD 

Figure 3. Bulk bands (shaded areas) and disper- 
sion curves of localised modes in a Y-Dy super- 
lattice when the planar defect p is made of 
a material different from the constituents of 
the superlattice. In this figure d, = dl = dZ,  

0.5 (-,-) or 0.75 (-..-) or 1 (---), The planar 
defect is bounded by Dy on both sides. 

CiP) 66 - - C g ) ,  p, = (pi') + pi2))/2 and C & ) / C g )  = 

to be bounded by material 1 on both sides, so the dispersion relation ( sa)  has to be used. 
The localised modes are presented for a set of values of C$), keeping constant the two 
other parameters p(P) and Cg) of the planar defect (p(P) = (p(Y) + p(Dy))/2, Cg) = 
C g ) ) .  The localised branches are in an increasing order as functions of Cg) , both inside 
the gaps and below the bulk bands. By increasing C$) they merge into the bands, 
whereas new branches may be extracted from the bands, towards higher frequencies. In 
figure4we have keptkllconstant (kilD = 2) andpresentedthevariationsofthefrequencies 
of the localised modes against C$). A set of curves corresponding to different values of 
C g )  and p(P) are sketched. In fact these curves are labelled according to the two following 
parameters: Cg'/p(P) which is the square velocity of sound in material p; and 
Cg'/C$) which defines the degree of elastic anisotropy in this material. 

Finally we also considered examples in which the two layers in the superlattice have 
different thicknesses ( d ,  # d 2 ) .  The qualitative conclusions are similar to the ones 
presented above but the quantitative results, and in particular the band gaps of the 
perfect superlattice, are totally different. 

3.2. Long- wavelength approximation 

We now investigate the existence and behaviour of the localised wave in the limit of long 
wavelengths compared to the thicknesses of the layers and in particular to the period D 
of the superlattice: this means that we assume kilD Q 1 and (C!/p( ')) ' /*w/D 4 1. 
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Figure 4. Variations of the frequencies of the 
localised waves as functions of CE’, at kllD = 2, in 
the first two gaps of the superlattice. In these 
figures dp = d ,  = dZ, and the planar defect is 
bounded by Dyon bothsides. The figures (a ) ,  ( b ) ,  
( c )  correspond to different values of the ani- 
sotropy parameter (Cg’/C$’), namely 0.5, 1 and 
1.5 respectively in units of (Cg’/Cg’). Each 
figure contains a set of curves corresponding 
to different velocities of sound in material p; 
(C$’/p(P)) takes the values 0.5 (....), 1 (-.-), 
1.5 (---) and 2 (-) in units of C g ) / p ( Y ) .  

Let us first notice that a Taylor expansion of (7)  in this approximation gives the 
dispersion of the bottom of the bulk bands in the superlattice [6] 

w = cbkil[l - &blkilI2D2 -k o(ik1112D2)] (12) 
cb is an average velocity of sound in the superlattice 

c i  = C&/p 
and &b, which characterises the curvature of the dispersion curve, is given by 
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In (13) C66 and P are defined as arithmetic averages of the corresponding quantities in 
the two layers of the superlattice 
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c 6 6  = [d 1 Cg) + d2 C g ) ] / D  
P = (dlP1 + d2P2)/D. 

(14a) 
(14b) 

C& is an effective constant associated with the superlattice considered as an effective 
homogeneous medium [6] ,  describing the propagation of shear horizontal waves along 
the axis of the superlattice 

D / C &  = d l / C t )  + d 2 / C z ) .  

( I ) /  ( i )  l i 2 .  
C l  =(C,4 P 1 

(14c) 

( 1 4 4  

Finally c, (i  = 1,2 ,  p) is a velocity of sound in material i defined by 

Taylor expansions of (9) show that the dispersion relation of the localised mode below 
the bulk bands has to be searched under the form 

o = c,kli[l - ( ~ b  + ~ ~ ) l k i 1 1 ~ D ~  + o ( J ~ \ ~ / ~ D ~ ) ] .  (15) 
This means that the velocity of the localised wave (when it exists) is equal to that of the 
bottom of the bulk bands (12), the only difference between these two curves coming 
from their curvatures. 

Obviously, the dispersion curve (15) corresponds to a localised mode only if ep > 0. 
However, the expansion of (9) leads to relations which give &;I2 ,  and not E ~ ;  therefore 
another condition is required in order that (15) represent a localised wave, namely the 
quantity giving should also be positive. We only give here the results of these 
calculations. 

Let us first start from (9b) where the planar defect is bounded by materials 1 and 2. 
Then we obtain 

2 (p)  2 4C c e  -2 2 - 2 2 
&p = [ ( d p )  (P / 66 4 4 P  l ( c b  c p >  

- [ ( d , d 2 ) 2 ( ~ ( 1 ) ~ ( 2 ) ) 2 / 1 2 D 2 C 6 6 C ~ 4 P 2 ]  (c: - ~ 1 ) ~  (16) 

(i) cp < cb (174 
(ii) Ep > 0. (17b) 

and we find that the localised wave (15) exists under the conditions 

The condition (17a) where cp = (C@)/p(P)) ‘1’ is the velocity of sound in material p means 
that this material should be ‘softer’ than the superlattice considered as an effective 
homogeneous medium. On the other hand, the condition (17b) involves in a soph- 
isticated expression the elastic parameters and thicknesses of the layers. 

Let us now start from (9a). Here the perturbation with respect to the perfect super- 
lattice consists of: one layer of material 1 (with a thickness d, )  plus one layer of material 
p (with a thickness dp) .  One can define [20] a mean velocity of sound 2, in this ‘two-layer 
planar defect’ as 

ti = ( d l C i )  + d,C&))/(d,p(’) + dpp(P)). (18) 
Then the expansion of (sa) shows that the localised branch (15) exists if 
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where 

Ep [ (d l  + ~ P ) ~ / ~ C , ~ C L ]  p’ (C2  - 

- [ (d1 d2)  (p‘1)p(2))2/1202 c6(j c&$p2] (c! - cl)’, 

p = (d,p‘l’ + d,p‘P’)/(d, + dp). 

(20) 

(21) 

In this expression c 6 6 7  CS , p, ci , E ,  are defined as in (14) and (18) and 

Again, the condition (19a) means that the velocity of sound in the planar defect should 
be smaller than a velocity in the superlattice considered as an effective medium. 

Finally let us emphasise from (15) and (18)-(20) the particular case in which p = 2: 
this means that the only perturbation in an otherwise perfect superlattice consists of a 
difference between the thickness of one layer of type 2 and those of the normal layers. 
In this case (20) becomes 

&p = [(e: - C~)2(p‘1’p‘2’)2/402C(j6C~p2](dl)2[(dp - d2)2 - (d2)2/3]. 

( 9  c1 < c2 and d, < dz(1 - 3-1’2) (23a) 

(ii) c1 > c2 and d, > d2(1 + 3-1’2). (23b) 

(22) 
Combining the conditions (19) one finds that the localised wave (15) exists if 

or 

In figure 1 we have presented examples of the dispersion curves corresponding to three 
different values of d,. For two of them the condition (23a) is satisfied and therefore the 
localised branch below the bulk bands extend down to kll= 0; in the third case neither 
of the conditions (23) is satisfied and this localised wave merges into the bands at a finite 
value of kil. 

4. Concluding remarks 

In this paper we obtained the dispersion relations and showed the existence of shear 
horizontal vibrations localised at a planar defect in a superlattice. The planar defect was 
defined as a layer having different elastic parameters and/or thickness than the normal 
layers in the superlattice. Obviously, more sophisticated situations in which the planar 
defect is an heterogeneous system composed of a few layers or/and is situated in the 
vicinity of the free surface of the superlattice may be imagined and studied by the same 
method as in this paper. Also, one can investigate the localised modes of sagittal 
polarisations, or, more generally, modes involving the three directions of vibration (see 
[3, 5, 61) when the superlattice is composed of crystals of lower symmetry and/or the 
wave vector kli is along an arbitrary direction. 

However the study of localised shear horizontal vibrations may lead to the finding 
of new types of modes because in the case of homogeneous materials such waves may 
exist near surfaces and interfaces only under special conditions. For example, the planar 
free surface of an homogeneous medium cannot support shear horizontal modes. The 
deposition of a thin layer of a softer material on this substrate gives rise to the well known 
Love modes [21], the first of which has the same phase velocity as in the substrate but a 
different curvature (see (15)). A surface shear horizontal branch is also obtained if the 
surface of the homogeneous medium is periodically rough instead of being planar [22]. 
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This branch has the same behaviour as the first Love mode. Finally the free surface of a 
superlattice may support shear horizontal vibrations [4] whose frequencies are situated 
inside the gaps or possibly below the bottom of the bulk bands. When this last branch 
goes down to kll= 0 it also behaves like the first Love mode (see (15)). 

The planar interface between two homogeneous media is also unable to support 
shear horizontal waves. However, such a mode can be induced by creating at the 
interface conditions which are the counterpart of those listed above for the surface 
problems. For example [17, 181, one can add a thin layer of another material between 
the two media in order to obtain a sandwich ABC (see the dispersion relation (11)); 
when A = Cone obtains the particular case of a planar defect in medium A. An interface 
shear horizontal branch may also exist at a periodically rough interface between two 
media [23]; however, the amplitude of the roughness should now exceed a minimum 
value in order to extract such a branch from the bulk bands. Finally, interface shear 
horizontal waves can exist [ 161 at the boundary between a superlattice and a substrate 
which may be an homogeneous medium; their frequencies belong to the gaps of the 
superlattice or can possibly be below the bottom of the bulk bands. In contrast to the 
surface problems, in all these three examples an interface branch extracted below the 
bulk bands cannot extend down to kli = 0 but merges into these bands at a finite value of 
41 (an exception occurs if the two media on either side of the interface have exactly the 
same phase velocities; this is, for example, the case for a planar defect ABA: a localised 
branch with a dispersion similar to that of the first Love mode appears [17] when the 
velocity of sound in medium B is lower than that in medium A). 

The physical system considered in this paper is a generalisation of the simpler planar 
defect [17] ABA, where the medium A is now replaced by an heterogeneous material 
like a superlattice. This opens the possibility of having localised modes in the gaps of the 
superlattice and also extends the conditions to have a localised branch going down to 
kll= 0, below the bulk bands. With the present ability to manufacture heterostructures 
with a good precision, such a system can be created artificially. However, the presence 
of defects due to possible fluctuations in the elastic properties and thicknesses of the 
materials or due to the intermixing of two layers may also induce some modifications in 
the density of states. A further study should give these last variations not only in the 
gaps but also inside the bulk bands and especially indicate the appearance of resonance 
structures. 
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